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Quantitative estimates for approximation by positive linear operators are
obtained with the use of a summability method which includes both convergence
and almost convergence.

Korovkin's famous theorem [5] regarding convergence of sequences
of positive linear operators in the space of continuous functions was put into
a quantitative form by Shisha and Mond [8]. In [4] it was shown that
Korovkin's results are valid if convergence is replaced by almost convergence,
and the modified results were recently put into quantitative form by
Mohapatra [7]. It is the purpose of this note to bring some unification
through the use of a summability method introduced by H. T. Bell [I].

Let B = {A(nl} = {(alr~')} be a sequence of infinite matrices such that
alr~) ? 0 for k, j, n = 1, 2,.... A sequence of real numbers, {Xi}, is said to be
B summable to L if

uniformly in n == 1, 2,....
If, for some matrix A, A(n) = A for n = 1,2,... , then B summability is

just matrix symmabitlity by A. If, for n = 1, 2'00" alr~) = 11k for n ~ j <
k + n, and alr~) is 0 otherwise, then B summability reduces to almost con
vergence [6]. We also note that the method of order summability of Jurkat
and Peyerimhoff [2, 3] is a special case of B summability [1].

Let {Li } be a sequence of positive linear operators from era, b] to C[a, b]
and let {A(n)} = B be a sequence of infinite matrices with non-negative real
entries. For IE C[a, b], A(n)(f, X) denotes the double sequence

A~n)(f, x) = f ak~)Li(f(t), x),
i~l
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SUMMABILITY AND POSITIVE LINEAR OPERATORS

We define II Ak(f)11 to be

sup sup I Ain)(f, x)1
n ",,,[a,b]

and we assume that
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(1)

where Co(x) = 1 for all x E [a, b]. It then follows that, for fE qa, b],
{Lj(f)} is B summable to j, uniformly on [a, b], if and only if

II Ak(f) - fll == sup sup I Ain)(f) - f(x) I
n ",,,[a,b]

tends to 0 as k tends to 00.

The proofs of the following theorems, which are similar to the proofs of
the corresponding results of [7] and [8J, are omitted.

THEOREM 1. Let {L j } be a sequence of positive linear operators from
qa, b] to qa, b]. Let B = {A(nl} be a sequence of infinite matrices with
non-negative real entries. Assume (1) is satisfied. Then, for fE qa, b] and

k = 1,2'00"

where

J1'k2 = II Ak«t - x)2)11,

Ilfll = sup If(x) I,
",,,[o,b]

and w denotes the modulus of continuity off

Let K be the additive Abelian group of real numbers modulo 27T on
which the metric d is defined by

d(x, y) = min{1 x - y I, 27T - I x - y I},

for x, y E K, 0 ~ x, y ~ 27T. Let C(K) denote the set of all continuous,
real valued functions on K. For fE C(K), the modulus of continuity, w,
is defined by

w(j, 0) = sup If(x) - f(y)l.
x.yeK

d(""lI) (6

(2)

THEOREM 2. Let {L j } be a sequence of positive linear operators from
C(K) to C(K). Assume (1) holds with [a, b] replaced by K, where B = {A(nl}
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is a sequence ofinfinite matrices with nonnegative real entries. Then,for f E C(K)
and k = 1,2,... ,

where w is defined by (2),

I!fll = sup If(x)l,
XEK

and

We also note that results analogous to Theorems 3 and 4 of [7] can be
obtained for B summability.
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